
Survey of ECP Application Development Teams

on Tools for Performance Analysis and Debugging

Peter McCorquodale1, Greg Watson2, and Shirley Moore3

1Lawrence Berkeley National Laboratory, Berkeley, CA
2Oak Ridge National Laboratory, Oak Ridge, TN

3University of Texas, El Paso, TX

1



1 Survey methodology

We conducted a survey of Application Development team members on the Exascale Computing
Project, asking them to rate the importance of various functionalities of performance analysis tools
and debugging tools, and to rate their satisfaction with such tools that they are currently using.
This survey was done on SurveyMonkey over two iterations, the first in November of 2020, and the
second in January of 2021. The full survey form is shown in the Appendix of this report.

1.1 Initial survey in November 2020 received inadequate response

What we sent: The first iteration of the survey was sent via a common link emailed to the ecp-ad-pis
list by administrator Nate Noll at Oak Ridge. The members of this list are the Principal Investiga-
tors of the Application Development teams of the Exascale Computing Project. The email, shown
in Figure 1, asked PIs to forward the survey link to members of their project teams. The email
was sent on November 13, and the survey closed on November 30. No reminders were sent.

The ECP Proxy Applications team is seeking input from ECP applications

developers to determine how well current and emerging performance

analysis tools and debugging tools meet ECP application requirements,

and to identify deficiencies and gaps.

So in order for us to obtain feedback from as broad a group as

possible, could you please forward this survey link to the members of

your ECP application development project team? The survey closes on

November 30, 2020:

https://www.surveymonkey.com/r/CTP2KSH

Peter McCorquodale and Greg Watson, for the ECP Proxy Applications team

Figure 1: Initial email sent to ecp-ad-pis on November 13, 2020.

The response: Only five responses were received. Since there are hundreds of ECP AD team
developers, we figured that the low response rate indicated that few of these developers had even
seen the survey, likely because not many PIs forwarded the surveys to their team members. It is
impossible to know which PIs forwarded the survey, or how many did. However, the five who did
respond reported being on different AD teams in Question 1 of the survey (Section 2 of this report).
We do not know the identities of those who responded to the survey, but SurveyMonkey does give
us their IP addresses.

1.2 Second survey in January 2021 had much better response rate

After the failure of the first survey, we decided to send the same survey to email addresses scraped
from the https://confluence.exascaleproject.org/ website. The email addresses were taken
from the rosters listed for the 33 AD teams on the website, where such rosters were available. When
a team’s pages on the website did not list contact information for members, such as LatticeQCD, we
took email addresses from ECP 2020 annual meeting posters, or in the case of Proxy Applications,
from the team’s own external website.

What we sent: We ended up with 613 email addresses that were fed into SurveyMonkey. Sur-
veyMonkey sent a different link to each recipient, so responses could be tracked individually. The

2



survey was sent on January 11, with automatic reminder emails sent out on January 25, and closed
on January 30. The email had the same words as the previous one in Figure 1, with the updated
deadline date, and ending with: “If you have already completed this survey, then thank

you for your responses.”
The response: According to SurveyMonkey, 27 (4.4%) of the 613 emails bounced, and 10 (1.6%)

opted out of all emails from my SurveyMonkey account, so that left 576 email addresses that could
possibly have responded. Out of these 576, there were 36 responses (6.3%).

1.3 Responses to the two surveys are combined

In this report, we are combining the 5 responses from the first survey with the 36 responses from
the second, for a total of 41 responses. We consider it unlikely that anyone who completed the
first survey would have also completed the second survey. This supposition is confirmed by the fact
that none of the IP addresses of those who completed the second survey matched any of those who
completed the first survey.

1.4 January respondents reflect the domain diversity of those surveyed

Table 1 breaks down by Internet domain the email addresses that were taken from the ECP Con-
fluence website and used as targets for the January survey, and the number of these targets who
responded to the survey. The breakdown by the three major categories of Office of Science labs,
National Nuclear Security labs, and Other is very similar among those surveyed (53.5%, 24.0%,
and 22.5%) and among those who responded (58.3%, 22.2%, and 19.4%, respectively). The num-
ber of respondents by each individual domain is too small to be able to draw conclusions about
representativeness, but there was at least one response from every lab that had 10 or more targets.

targets respondents
domain # % % #

Office of Science Laboratories: 328 53.5% 58.3% 21
Argonne National Lab anl.gov 87 14.2% 8.3% 3
Brookhaven National Lab bnl.gov 18 2.9% 5.6% 2
Lawrence Berkeley National Lab lbl.gov 78 12.7% 16.7% 6
Oak Ridge National Lab ornl.gov 78 12.7% 11.1% 4
Pacific Northwest National Lab pnnl.gov 35 5.7% 11.1% 4
Princeton Plasma Physics Lab pppl.gov 22 3.6% 5.6% 2
SLAC National Accelerator Lab slac.stanford.edu 9 1.5% 0.0% 0
Thomas Jefferson National Accelerator Facility jlab.org 1 0.2% 0.0% 0

National Nuclear Security Administration Laboratories: 147 24.0% 22.2% 8
Lawrence Livermore National Lab llnl.gov 55 9.0% 11.1% 4
Los Alamos National Lab lanl.gov 48 7.8% 8.3% 3
Sandia National Laboratories sandia.gov 44 7.2% 2.8% 1

Other: 138 22.5% 19.4% 7
National Energy Technology Lab netl.doe.gov 6 1.0% 0.0% 0
National Renewable Energy Lab nrel.gov 21 3.4% 2.8% 1
National Institutes of Health nih.gov 3 0.5% 0.0% 0
National Institute of Standards and Technology nist.gov 1 0.2% 0.0% 0

.edu (not slac.stanford.edu) 77 12.6% 13.9% 5

.com 27 4.4% 2.8% 1

.net 2 0.3% 0.0% 0

.org (not jlab.org) 1 0.2% 0.0% 0
TOTAL: 613 36

Table 1: Distribution by Internet domain of targets and respondents to the January survey.

3



2 Question 1: Responses specifying AD teams

The first question on the survey asked:

1. Which ECP Application Development project(s) are you working on? Check all that apply.

There were 32 choices, as shown in Figure 8 in the Appendix.

2.1 Table of results

Table 2 shows the distribution of responses to Question 1 on AD team affiliation, classified according
to ECP’s six application categories. The second-last column in the table gives the number of email
addresses scraped from the team’s web pages on the ECP Confluence website and used as January
survey targets. Their total over all teams (or over all teams in an application category) exceeds the
number of survey targets, because many people are on more than one team. Although Applications
Assessment was not listed as a choice on the survey, because that project has ended, it is included
in the table because our January survey targets included email addresses from its web pages on the
ECP Confluence website.

2.2 Breakdown by application category

From the number of team members who were sent the January survey, and the number who
responded and clicked on the box for each team, we are able to calculate a response rate for each
team on the January survey, and this rate is given in the last column of Table 2. No respondent
checked any of the boxes for the three National Security applications. Response rates for the other
categories were relatively low for Data Analytics and Optimization (4.2% of 144 emails sent) and
Earth and Space Science (4.7% of 85), and relatively high for Chemistry and Materials (8.7% of
104) and Energy (9.8% of 153). Co-Design, the largest category with 203 email addresses over eight
teams, was in the middle with a 7.4% response rate.

2.3 “Other” responses

Question 1 also included a box for “Other: specify below.” There were three responses given here,
one each for ExaWorks and PETSc/TAO, which are ECP Software Technology teams, and one for
Uintah, which is not an ECP project.

2.4 Conclusion: survey respondents reflect diversity of ECP AD teams

The results in Table 2 show that the survey respondents are broadly representative of the ECP AD
teams, except for National Security applications. Of the 29 non-National-Security teams, 25 were
checked at least once over the two surveys, the four exceptions being EXAALT, ExaSky, Subsurface,
and Urban. In the rest of this report, we have chosen not to break down survey responses by AD
team or category, because the number of responses for each AD team is far too small, and even
grouping by the five represented application categories, the applications within a category often
use very different methods, so any conclusions drawn from breaking down responses by category
are likely to be spurious.

4



Total November ———— January ————
responses responses responses emails sent response rate

Chemistry and Materials: 11 2 9 104 8.7%
LatticeQCD 1 0 1 10 10.0%
NWChemEx 3 1 2 21 9.5%
GAMESS 1 0 1 5 20.0%
EXAALT 0 0 0 9 0.0%
ExaAM 4 0 4 38 10.5%
QMCPACK 2 1 1 21 4.8%

Energy: 16 1 15 153 9.8%
ExaWind 2 0 2 33 6.1%
Combustion-Pele 2 0 2 26 7.7%
ExaSMR 2 0 2 14 14.3%
MFIX-Exa 2 0 2 11 18.2%
WDMApp 6 1 5 50 10.0%
WarpX 2 0 2 19 10.5%

Earth and Space Science: 5 1 4 85 4.7%
ExaStar 1 0 1 8 12.5%
ExaSky 0 0 0 25 0.0%
EQSIM 1 0 1 6 16.7%
Subsurface 0 0 0 13 0.0%
E3SM-MMF 3 1 2 33 6.1%

Data Analytics and Optimization: 7 1 6 144 4.2%
Urban 0 0 0 23 0.0%
ExaSGD 2 0 2 33 6.1%
CANDLE 3 0 3 49 6.1%
ExaBiome 1 0 1 14 7.1%
ExaFEL 1 1 0 25 0.0%

National Security: 0 0 0 7 0.0%
ATDM LANL 0 0 0 6 0.0%
ATDM LLNL 0 0 0 0 —
ATDM SNL 0 0 0 1 0.0%

Co-Design: 16 1 15 203 7.4%
Proxy Applications 1 0 1 19 5.3%
Application Assessment 0 0 0 11 0.0%
CODAR 4 0 4 39 10.3%
COPA 2 0 2 33 6.1%
AMREX 2 0 2 16 12.5%
CEED 2 0 2 32 6.3%
ExaGraph 1 0 1 4 25.0%
ExaLearn 4 1 3 49 6.1%

Other, named by respondent: 3 0 3
ExaWorks (ST) 1 1
PETSc/TAO (ST) 1 1
Uintah (non-ECP) 1 1

Total responses given: 58 6 52 696 7.5%
Number of respondents: 41 5 36 576 6.3%

Table 2: Table of survey responses for Question 1 on AD teams. The first column gives the number
who checked the box for each team in either November of January, broken down in the second
column for November and the third column for January. The fourth column shows the number of
emails sent that were scraped from the ECP Confluence website for the January survey, and the
last column shows the response rate of the January survey, as defined as the number of respondents
who clicked the box for the AD team divided by the number of email addresses for that team.

5



3 Question 2: Importance of performance analysis functionalities

The second question on the survey was:

2. Performance analysis tools: How important is it for your application development to have tools
with each of these functionalities?

There were ten functionalities listed, in the order shown in Figure 9 in the Appendix, and the
options given for each were “essential”, “important but not essential”, “somewhat needed”, and “not
needed”. There was also a space for respondents to write in other functionalities.

Color legend:

important but somewhat not
essential not essential needed needed

Profile the time spent in each function/kernel

Identify bottlenecking resource

Measure cache and memory traffic

Measure inter-device communication

Measure inter-node communication

Determine efficiency of memory accesses (e.g.,
how much of cache line is being used on the
average, number of transactions per request)

Measure stall cycles and determine their causes

Measure floating point performance
(i.e., FLOPS)

Construct a roofline model (for the entire
application and per function or per kernel)

Measure instructions, cycles, and IPC

Figure 2: Distribution of responses to Question 2 on the importance of functionalities of perfor-
mance analysis tools, listed from top to bottom in decreasing order of number of responses of either
“essential” or “important but not essential”, ties broken by number of responses of “essential”.

3.1 Table of results

Figure 2 shows the responses checked on Question 2, with functionalities listed in order of number
of responses of either “essential” or “important but not essential”, with the highest at top. The
number of respondents who checked a box for a given functionality varied from 39 to all 41 survey
respondents. In the discussion below, when we report the fraction of respondents who gave a rating
for any one functionality, we take it as a fraction of the total number, 41, inferring that a respondent
who does not check a box for a particular functionality finds that functionality to be not needed.

6



3.2 What respondents find important: a majority say everything

The results in Figure 2 show us that:

• Every functionality on the list was rated as either essential or important by the majority of
respondents (22 to 39 out of 41).

• Every functionality was rated as at least “somewhat needed” by at least 85% of respondents
(35 of 41).

• The two functionalities that were rated as essential by the largest majorities were:

– “Profile the time spent in each function/kernel” (80%); and

– “Identify bottlenecking resource” (71%).

These two functionalities were rated as at least important, but not essential by at least 93% of
respondents.

• Other functionalities rated as essential by around half of respondents were:

– “Measure inter-device communication” (56%);

– “Measure cache and memory traffic” (49%); and

– “Measure inter-node communication” (49%).

All three of these were rated as at least important, but not essential by at least 83% of
respondents.

3.3 Other functionalities given by respondents

At the bottom of Question 2, the survey asked:

Please list any other tool functionalities for performance analysis that you need but are not listed
above.

Four respondents gave answers here:

• “The performance analysis tools need to work well with python – and with python applications
which are parallelized using MPI.”

• “Besides performance, need to see scheduling of kernels as well as memory copies. e.g. See
that two kernels are running simultaneously.”

• “It would be nice to use an accessor API of the performance analysis tools to feed the data
they collect into our logging system as the program runs. Otherwise connecting the data we
collect with the data the performance analysis tools is painful post-processing.”

• “Memory footprints on host and device. Memory bandwidth. % usage of host versus device.”

7



4 Question 3: Satisfaction with performance analysis tools

The third question on the survey was:

3. Performance analysis tools: How do you rate the tools you currently use in terms of how they
meet your requirements for each of these functionalities?

The same ten functionalities as in Question 2 were listed, and in the same order, as shown in
Figure 10 in the Appendix. The options given for each were “very good”, “good”, “fair”, “poor”, “I
don’t have this, but would like”, and “I don’t need this”. Then there was a space for respondents to
enter answers to the question, “Which tools, if any, do you currently use to do this?”

Color legend:

I don’t have
very this, but I don’t
good good fair poor would like need this

Profile the time spent in each function/kernel

Identify bottlenecking resource

Measure cache and memory traffic

Measure inter-device communication

Measure inter-node communication

Determine efficiency of memory accesses (e.g.,
how much of cache line is being used on the
average, number of transactions per request)

Measure stall cycles and determine their causes

Measure floating point performance
(i.e., FLOPS)

Construct a roofline model (for the entire
application and per function or per kernel)

Measure instructions, cycles, and IPC

Figure 3: Distribution of responses to Question 3 on satisfaction with current performance analysis
tools, listed in the same order as in Figure 2 for responses to Question 2, where functionalities have
been ranked from most important down to least important.

4.1 Table of results

Figure 3 shows the multiple-choice responses received on Question 3, where functionalities are listed
not in the order in which they appeared on the survey, but as in Figure 2 in Section 3, which is by
decreasing order of importance as indicated by responses to Question 2. The number of respondents

8



who checked a box for a given functionality varied from 33 to 38, of the 41 total respondents to the
survey.

4.2 Profile the time spent in each function/kernel: generally satisfied

Recall that “Profile the time spent in each function/kernel” was rated by respondents to Question 2 as
the most important of the ten functionalities that were listed, with 80% classifying it as “essential”.
On Question 3, 38 respondents gave ratings of their current tools on this functionality, compared
to 34 or 35 for the other functionalities. And the results displayed in Figure 3 show us that this
is the only functionality with a majority of respondents rating their current tools as either “very
good” (24%) or “good” (34%). Of the rest, 29% gave ratings of “fair”, 3% as “poor”, 8% opted for
“I don’t have this, but would like”, and 3% for “I don’t need this”. It was on this functionality that
those last two options received the fewest responses of all, indicating that respondents definitely
need to do time profiling, and almost all of them have tools to do it.

4.3 Other functionalities: many report lacking tools, or at least good ones

There was much less satisfaction with performance analysis tools on the other nine functionalities
on the list. As can be seen by a glance at the adjacent red and white bars in Figure 3, of those who
reported a rating or that they “would like” a functionality, other than time profiling, roughly half
the respondents rated their current tools as either “poor” or “I don’t have this, but would like”,
with the combined fraction who gave those two responses ranging from 31% for “Measure floating
point performance (i.e., FLOPS)” up to 55% for “Measure stall cycles and determine their causes”.

The two functionalities to which respondents gave the highest fraction of “I don’t have this, but
would like” answers were measuring communication: 50% for “Measure inter-node communication”
and 47% for “Measure inter-device communication”, in both cases excluding one response each of “I
don’t need this”.

4.4 NVIDIA Nsight tools received by far the most mentions, and rated highly

In the answer box asking respondents to name the tools they currently use for each functionality,
the ones that were mentioned the most were NVIDIA’s Nsight Compute and Nsight Systems, or
sometimes just “Nsight”. These tools received more mentions than all others put together, so it is
worth including brief descriptions of them from NVIDIA’s website:

NVIDIA Nsight Compute is an interactive kernel profiler for CUDA applications. It
provides detailed performance metrics and API debugging via a user interface and com-
mand line tool. In addition, its baseline feature allows users to compare results within
the tool. Nsight Compute provides a customizable and data-driven user interface and
metric collection and can be extended with analysis scripts for post-processing results. 1

NVIDIA Nsight Systems is a system-wide performance analysis tool designed to visualize
an applications algorithms, help you identify the largest opportunities to optimize, and
tune to scale efficiently across any quantity or size of CPUs and GPUs; from large
server to our smallest SoC. 2

1https://developer.nvidia.com/nsight-compute
2https://developer.nvidia.com/nsight-systems

9

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems


In the rest of this section on Question 4, we count Nsight Systems and Nsight Compute together,
because some respondents entered simply “Nsight” and did not specify either Nsight Systems or
Nsight Compute.

In Figure 4, we show the reported satisfaction levels of performance tools on nine of the ten
listed functionalities on the survey, excluding responses of either “I don’t have this, but would like”
or “I don’t need this”, and separating responses that mentioned Nsight from those that did not.
In all cases, those who mentioned Nsight reported greater satisfaction (ratings of “very good” or
“good”) with performance analysis tools than those who did not mention Nsight. No one who
mentioned using Nsight tools for any functionality reported a satisfaction level of “poor” on their
tools for that functionality.

As shown in Figure 4, the number of respondents who mentioned Nsight performance analysis
tools depended on which functionality was being asked about, and varied from 4 to 11 out of the
38 who responded to Question 3. The high levels of satisfaction reported by those who mentioned
Nsight tools, relative to those who did not, may be simply a result of people who are satisfied with
their tools being more likely to name those tools on the survey.

4.5 Performance analysis tools other than NVIDIA Nsight

For completeness, Table 3 lists all mentions by respondents of performance analysis tools other than
Nsight tools, with the rating given for current tools on each functionality. Since many respondents
named multiple tools, the ratings shown in the table should not necessarily be interpreted as
indicating satisfaction level with a particular tool. There are too few mentions of non-Nsight tools
to draw broader conclusions.

10



Color legend: very good good fair poor

Profile the time spent in each function/kernel:

Identify bottlenecking resource:

Measure cache and memory traffic:

Measure inter-device communication:

Determine efficiency of memory accesses (e.g., how much of cache line is being used on the average,
number of transactions per request):

Measure stall cycles and determine their causes:

Measure floating point performance (i.e., FLOPS):

Construct a roofline model (for the entire application and per function or per kernel):

Measure instructions, cycles, and IPC:

Figure 4: Comparison of satisfaction levels (for those who gave one) of those respondents who
mentioned using Nsight tools, against those who did not mention Nsight tools. Functionalities are
listed in the same order as in Figures 2 and 3, except that “Measure inter-node communication” is
omitted, because no respondent reported using Nsight tools for that. These are not specifically
ratings for Nsight tools; the ratings include everyone who mentioned using Nsight tools for the
listed functionality.

11



A
ll
in

ea
M

A
P

ca
li
p

er

C
U

P
T

I

E
P

A
n

a
ly

ti
cs

’
P

E
B

IL

g
p

ro
f

H
P

C
T

o
o
lk

it

In
te

l
A

d
v
is

o
r

IP
M

k
o
k
k
o
s

p
ro

fi
li
n

g

m
p

ip

n
v
p

ro
f

n
v
v
p

P
A

P
I

P
S

iN
S

T
ra

ce
r

P
y
th

o
n

cP
ro

fi
le

a
n

d
P

y
in

st
ru

m
en

t

ro
cp

ro
f

T
A

U

ti
m

em
o
ry

v
a
lg

ri
n

d

V
T

u
n

e

a
p

p
li
ca

ti
o
n

ti
m

er
s

v
en

d
o
r

to
o
ls

V
Profile the time spent V V V
in each function/kernel G F G G F G V G F F P G G G

G G F F
F

Identify V
bottlenecking P V V V F
resource P
Measure cache and F G F G G
memory traffic P
Measure inter-device F F F
communication
Measure inter-node G G G G G G V
communication F F F G
Determine efficiency of
memory accesses (e.g.,
how much of cache line G G G F
is being used on the
average, number of
transactions per request)
Measure stall cycles and P F
determine their causes
Measure floating point
performance F G G V P G V
(i.e., FLOPS) G
Construct a roofline
model (for the entire V F
application and per
function or per kernel)
Measure instructions, F F P G
cycles, and IPC

Table 3: Table of mentions by respondents to Question 3 of all performance analysis tools other
than NVIDIA’s Nsight tools. There is a letter entry in the table for each rating of a functionality
of performance analysis tools of Very good, Good, Fair, or Poor.

12



5 Question 4: Importance of debugging functionalities

The fourth question on the survey was:

4. Debugging tools: How important is it for your application development to have tools with each
of these functionalities for HPC applications?

There were five functionalities listed, in the order shown in Figure 11 in the Appendix, and
just as in Question 2 on performance analysis tools, the options given for each were “essential”,
“important but not essential”, “somewhat needed”, and “not needed”. There was also a space for
respondents to write in “any other tool functionalities for debugging HPC applications that you need
but are not listed above, other than basic debugger functions such as setting breakpoints and displaying
memory contents.”

Color legend:

important but somewhat not
essential not essential needed needed

Detect memory errors
(e.g., overwriting, leaks)

Handle different programming models,
especially for GPUs

Determine where and why a code crashed
(including on large-scale runs)

Look at core files

Attach to and detach from a running
application

Figure 5: Distribution of responses to Question 4 on the importance of functionalities of debugging
tools, listed from top to bottom in decreasing order of number of responses of either “essential” or
“important but not essential”.

5.1 Table of results

Figure 5 shows the responses received on Question 4, with functionalities listed in order of the
number of responses of either “essential” or “important but not essential”, with the highest at top.
The number of respondents who checked a box for a given functionality was 38 or 39, out of 41 total
respondents to the survey. In the discussion below, when we report the fraction of respondents who
gave a rating for any one functionality, we take it as a fraction of the total number, 39, inferring
that a respondent who does not check a box for a particular functionality finds that functionality
to be not needed. We do not include the two survey respondents who skipped the whole question.

5.2 What respondents find important: most of the listed functionalities

Here are some results shown by Figure 5.

• At least 87% of respondents consider these functionalities to be either essential or important:

13



– “Detect memory errors (e.g., overwriting, leaks)”: 72% essential;

– “Handle different programming models, especially for GPUs”: 72% essential;

– “Determine where and why a code crashed (including on large-scale runs)”: 79% essential.

• The remaining two functionalities are still rated as at least somewhat needed by 82% or more
respondents, but not as important:

– “Look at core files”: 23% essential, 56% at least important;

– “Attach to and detach from a running application”: 15% essential, 38% at least important.

5.3 Other functionalities given by respondents

At the bottom of Question 4, the survey asked:

Please list any other tool functionalities for debugging HPC applications that you need but are
not listed above, other than basic debugger functions such as setting breakpoints and displaying
memory contents.

Two respondents gave answers here:

• “gdb backtraces output from gasnet and/or frozen application (generally on a single node)”

• “Monitoring where and how an application is running (i.e., which cores, threads, GPUs, etc).
Synchronous GPU kernel execution for debugging.”

14



6 Question 5: Satisfaction with debugging tools

The fifth and final question on the survey was:

3. Debugging tools: How do you rate the tools you currently use in terms of how they meet your
requirements for each of these functionalities?

The same five functionalities as in Question 4 were listed, and in the same order, as shown in
Figure 11 in the Appendix. The options given for each were “very good”, “good”, “fair”, “poor”, “I
don’t have this, but would like”, and “I don’t need this”. Then there was a space for respondents to
enter answers to the question, “Which tools, if any, do you currently use to do this?”

Color legend:

I don’t have
very this, but I don’t
good good fair poor would like need this

Detect memory errors
(e.g., overwriting, leaks)

Handle different programming models,
especially for GPUs

Determine where and why a code crashed
(including on large-scale runs)

Look at core files

Attach to and detach from a running
application

Figure 6: Distribution of responses to Question 5 on satisfaction with current debugging tools,
listed in the same order as in Figure 5 for responses to Question 4, where functionalities have been
ranked from most important down to least important.

6.1 Table of results

Figure 6 shows the multiple-choice responses received on Question 5, where functionalities are
listed by decreasing order of importance as indicated by responses to Question 4, as in Figure 5 in
Section 5. The number of respondents who checked a box for a given functionality varied from 36
to 39, of the 41 total respondents to the survey.

6.2 Valgrind and gdb named the most, but ratings not great when mentioned

15



Color legend: very good good fair poor

Detect memory errors (e.g., overwriting, leaks):

Determine where and why a code crashed (including on large-scale runs):

Look at core files:

Figure 7: Comparisons of satisfaction levels, by those who gave them, of debugging tools applied
to three different named functionalities on the survey, each broken down by those responses that
mentioned the most frequently named debugging tools and those that did not. The ratings are not
specifically for the tools mentioned; each is an overall rating of debugging tools for the functionality
in question, by those who mentioned that tool. Many respondents named more than one debugging
tool that they use for a given functionality.

A
T

P
(b

y
C

ra
y
)

a
sa

n
A

d
d

re
ss

S
a
n

it
iz

er

a
ss

er
ti

o
n

ch
ec

k
in

g

cu
d

a
-m

em
ch

ec
k

cu
d

a
-g

d
b

g
a
sn

et
cr

a
sh

re
p

o
rt

s

g
d

b
4
h

p
c

(b
y

H
P

E
)

h
ip

k
o
k
k
o
s

ll
d

b
(b

y
L

L
V

M
)

N
V

ID
IA

C
o
m

p
u

te
S

a
n

it
iz

er

N
v
id

ia
-g

d
b

o
p

en
ss

p
ri

n
tf

P
y
th

o
n

to
o
lc

h
a
in

ro
cm

V
a
lg

ri
n

d

v
en

d
o
r

to
o
ls

Detect memory errors V G G P G G P
(e.g., overwriting, leaks) G F
Handle different
programming models, G G P F
especially for GPUs
Determine where and why V V G
a code crashed (including V P F V F G F G
on large-scale runs) F
Look at core files V V
Attach to and detach from
a running application

Table 4: Table of mentions by respondents to Question 5 of all performance analysis tools other
than those listed in the section whatever. There is a letter entry in the table for each rating of
Very good, Good, Fair, or Poor.

16



A Appendix: full survey form

The exact survey form as seen on the SurveyMonkey website is reproduced in this appendix.

• Figure 8: The preamble to the survey and Question 1 on project affiliation.

• Figure 9: Question 2 on importance of functionalities of performance analysis tools.

• Figure 10: Question 3 on satisfaction with performance analysis tools.

• Figure 11: Question 4 on importance of functionalities of debugging tools, and Question 5 on
satisfaction with those tools.

Figure 8: The preamble to the survey and Question 1 on project affiliation. This was for the
November survey; the only difference between this form and the one sent in January was the
closing date of the survey.

17



Figure 9: Question 2 on importance of functionalities of performance analysis tools.

18



Figure 10: Question 3 on satisfaction with performance analysis tools.

19



Figure 11: Question 4 on importance of functionalities of debugging tools, and Question 5 on
satisfaction with those tools.

20


	1 Survey methodology
	1.1 Initial survey in November 2020 received inadequate response
	1.2 Second survey in January 2021 had much better response rate
	1.3 Responses to the two surveys are combined
	1.4 January respondents reflect the domain diversity of those surveyed

	2 Question 1: Responses specifying AD teams
	2.1 Table of results
	2.2 Breakdown by application category
	2.3 ``Other'' responses
	2.4 Conclusion: survey respondents reflect diversity of ECP AD teams

	3 Question 2: Importance of performance analysis functionalities
	3.1 Table of results
	3.2 What respondents find important: a majority say everything
	3.3 Other functionalities given by respondents

	4 Question 3: Satisfaction with performance analysis tools
	4.1 Table of results
	4.2 Profile the time spent in each function/kernel: generally satisfied
	4.3 Other functionalities: many report lacking tools, or at least good ones
	4.4 NVIDIA Nsight tools received by far the most mentions, and rated highly
	4.5 Performance analysis tools other than NVIDIA Nsight

	5 Question 4: Importance of debugging functionalities
	5.1 Table of results
	5.2 What respondents find important: most of the listed functionalities
	5.3 Other functionalities given by respondents

	6 Question 5: Satisfaction with debugging tools
	6.1 Table of results
	6.2 Valgrind and gdb named the most, but ratings not great when mentioned

	A Appendix: full survey form

